x$ksusecst 内部视图详解

9i 中v$session_wait 是Oracle wait interface的一个主要用户接口,而该动态视图的内容来源于x$ksusecst内部视图:

SQL> select view_definition from v$fixed_view_definition where view_name='GV$SESSION_WAIT';

select s.inst_id,s.indx,s.ksussseq,e.kslednam, e.ksledp1,s.ksussp1,s.ksussp1r,e.
ksledp2, s.ksussp2,s.ksussp2r,e.ksledp3,s.ksussp3,s.ksussp3r, decode(s.ksusstim,
0,0,-1,-1,-2,-2,   decode(round(s.ksusstim/10000),0,-1,round(s.ksusstim/10000)))
, s.ksusewtm, decode(s.ksusstim, 0, 'WAITING', -2, 'WAITED UNKNOWN TIME',  -1, '
WAITED SHORT TIME', 'WAITED KNOWN TIME')  from x$ksusecst s, x$ksled e where bit
and(s.ksspaflg,1)!=0 and bitand(s.ksuseflg,1)!=0 and s.ksussseq!=0 and s.ksussop

SQL> desc x$ksusecst
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ADDR                                               RAW(4)
//即 v$session中 saddr 会话的起始地址
 INDX                                               NUMBER
//即 instance_id
 INST_ID                                            NUMBER
//即 sid
 KSSPAFLG                                           NUMBER
 KSUSEFLG                                           NUMBER
//该session是否仍活着, 1 为 alive
 KSUSENUM                                           NUMBER
 KSUSSSEQ                                           NUMBER
// 相当于v$session 视图的SERIAL#列
 KSUSSOPC                                           NUMBER
// 对应x$ksled视图indx列,等待事件列表的一个序列号
 KSUSSP1                                            NUMBER
// 即v$session_wait表的p1列
 KSUSSP1R                                           RAW(4)
// 即v$session_wait表的p1raw
 KSUSSP2                                            NUMBER
// 即v$session_wait表的p2
 KSUSSP2R                                           RAW(4)
// 即v$session_wait表的p2raw
 KSUSSP3                                            NUMBER
// 即v$session_wait表的p3
 KSUSSP3R                                           RAW(4)
// 即v$session_wait表的p3raw
 KSUSSTIM                                           NUMBER
// 即v$session_wait表的wait_time,但单位为微秒
 KSUSEWTM                                           NUMBER
// 即v$session_wait表的seconds_in_wait,单位仍为秒


select s.inst_id,
       s.indx sid,
       s.ksussseq seq#,
       e.kslednam event,
       e.ksledp1 p1text,
       s.ksussp1 p1,
       s.ksussp1r p1raw,
       e.ksledp2 p2text,
       s.ksussp2 p2,
       s.ksussp2r p2raw,
       e.ksledp3 p3text,
       s.ksussp3 p3,
       s.ksussp3r p3raw,
       s.ksusstim wait_time,
       s.ksusewtm seconds_in_wait,
              'WAITED UNKNOWN TIME',
              'WAITED SHORT TIME',
              'WAITED KNOWN TIME') state
 from x$ksusecst s, x$ksled e
 where bitand(s.ksspaflg, 1) != 0
   and bitand(s.ksuseflg, 1) != 0
   and s.ksussseq != 0
   and s.ksussopc = e.indx
   and e.kslednam not in ('pmon timer',
                          'VKTM Logical Idle Wait',
                          'VKTM Init Wait for GSGA',
                          'IORM Scheduler Slave Idle Wait',
                          'rdbms ipc message',
                          'i/o slave wait',
                          'VKRM Idle',
                          'wait for unread message on broadcast channel',
                          'wait for unread message on multiple broadcast channels',
                          'class slave wait',
                          'KSV master wait',
                          'watchdog main loop',
                          'DIAG idle wait',
                          'ges remote message',
                          'gcs remote message',
                          'heartbeat monitor sleep',
                          'SGA: MMAN sleep for component shrink',
                          'MRP redo arrival',
                          'LNS ASYNC archive log',
                          'LNS ASYNC dest activation',
                          'LNS ASYNC end of log',
                          'simulated log write delay',
                          'LGWR real time apply sync',
                          'parallel recovery slave idle wait',
                          'LogMiner builder: idle',
                          'LogMiner builder: branch',
                          'LogMiner preparer: idle',
                          'LogMiner reader: log (idle)',
                          'LogMiner reader: redo (idle)',
                          'LogMiner client: transaction',
                          'LogMiner: other',
                          'LogMiner: activate',
                          'LogMiner: reset',
                          'LogMiner: find session',
                          'LogMiner: internal',
                          'Logical Standby Apply Delay',
                          'parallel recovery coordinator waits for slave cleanup',
                          'parallel recovery control message reply',
                          'parallel recovery slave next change',
                          'PX Deq: Txn Recovery Start',
                          'PX Deq: Txn Recovery Reply',
                          'fbar timer',
                          'smon timer',
                          'PX Deq: Metadata Update',
                          'Space Manager: slave idle wait',
                          'PX Deq: Index Merge Reply',
                          'PX Deq: Index Merge Execute',
                          'PX Deq: Index Merge Close',
                          'PX Deq: kdcph_mai',
                          'PX Deq: kdcphc_ack',
                          'shared server idle wait',
                          'dispatcher timer',
                          'cmon timer',
                          'pool server timer',
                          'JOX Jit Process Sleep',
                          'jobq slave wait',
                          'pipe get',
                          'PX Deque wait',
                          'PX Idle Wait',
                          'PX Deq: Join ACK',
                          'PX Deq Credit: need buffer',
                          'PX Deq Credit: send blkd',
                          'PX Deq: Msg Fragment',
                          'PX Deq: Parse Reply',
                          'PX Deq: Execute Reply',
                          'PX Deq: Execution Msg',
                          'PX Deq: Table Q Normal',
                          'PX Deq: Table Q Sample',
                          'Streams fetch slave: waiting for txns',
                          'Streams: waiting for messages',
                          'Streams capture: waiting for archive log',
                          'single-task message',
                          'SQL*Net message from client',
                          'SQL*Net vector message from client',
                          'SQL*Net vector message from dblink',
                          'PL/SQL lock timer',
                          'Streams AQ: emn coordinator idle wait',
                          'EMON slave idle wait',
                          'Streams AQ: waiting for messages in the queue',
                          'Streams AQ: waiting for time management or cleanup tasks',
                          'Streams AQ: delete acknowledged messages',
                          'Streams AQ: deallocate messages from Streams Pool',
                          'Streams AQ: qmn coordinator idle wait',
                          'Streams AQ: qmn slave idle wait',
                          'Streams AQ: RAC qmn coordinator idle wait',
                          'HS message to agent',
                          'ASM background timer',
                          'auto-sqltune: wait graph update',
                          'WCR: replay client notify',
                          'WCR: replay clock',
                          'WCR: replay paused',
                          'JS external job',
                          'cell worker idle',
                          'SQL*Net message to client');

famous summary stack trace from Oracle Version Bug Note

as this bug note claimed that:

Customer frequently receives the following errors while rollback of a
transcation using Portal application:

ORA-603: ORACLE server session terminated by fatal error
ORA-600: internal error code, arguments: [6856], [0], [0], [], [], [], [],

ORA-600: internal error code, arguments: [25012], [3], [15], [], [], [], [],

Wed May 19 12:47:28 2004
Errors in file /opt/oracle/admin/ORTPTP/udump/ortptp_ora_6363.trc:
ORA-603: ORACLE server session terminated by fatal error
ORA-600: internal error code, arguments: [6856], [0], [0], [], [], [], [],
Wed May 19 14:38:39 2004
Errors in file /opt/oracle/admin/ORTPTP/udump/ortptp_ora_782.trc:
ORA-600: internal error code, arguments: [25012], [3], [15], [], [], [], [],

Tablespace 3 = TEMP tablespace.

Block dump in tracefile ortptp_ora_21207.trc points to TEMP tablespace and
TEMP segment:
Block header dump:  0x00c0b917
Object id on Block? Y
seg/obj: 0xc0b916  csc: 0x00.18f4bc  itc: 1  flg: O  typ: 1 – DATA
fsl: 0  fnx: 0x0 ver: 0x01





Summary Stack   (to Full stack)   (to Function List)
ksedmp             # KSE: dump the process state
kgeriv             # KGE Record Internal error code (with Va_list) (IGNORE)
kgeasi             # Raise an error on an ASSERTION failure (IGNORE)
kdbmrd             ? Module Notes: kdb.c – Kernel Data Block structure and
internal manipulation
kdoqmd             ? Module Notes: kdo.c – Kernel Data Operations
kcoapl             NAME: kcoapl – Kernel Cache Op APpLy
ktuapundo          ktuapundo – Kernel Transaction Undo APply UNdo
ktbapundo          ktbapundo – Kernel Transaction Block APply UNdo
kdoiur             declare local objects */
kcoubk             kcoubk – Kernel Cache Op Undo callBacK — invoke undo
callback routine    */
ktundo             ktundo – Kernel Transaction UNDO
ktubko             Get undo record to rollback transaction, non-CR only */
ktuabt             ktuabt – Kernel Transaction Undo ABorT
ktcrab             KTC: Kernel Transaction Control Real ABort – Abort a
k2labo             abort session: first abort aborts tx
k2send             TESTING SUPPORT:
xctrol             XaCTion ROLlback: Rollback the current transaction of the
current session.
opiodr             OPIODR: ORACLE code request driver – route the current
ttcpip             TTCPIP: Two Task Common PIPe read/write
opitsk             opitsk – Two Task Oracle Side Function Dispatcher
opiino             opiino – ORACLE Program Interface INitialize Opi
opiodr             OPIODR: ORACLE code request driver – route the current
opidrv             # opidrv – ORACLE Program Interface DRiVer (IGNORE)
sou2o              # Main Oracle executable entry point
main               # Standard executable entry point
start              # C program entry point (IGNORE)

another summary:

drepprep     perform the document indexing
evapls    EVAluate any PLSql function
kcmclscn    check Lamport SCN
kcsadj1    adjust SCN
kgesinv    KGE Signal Internal (Named) error (with VA_list)
kghalo    KGH: main allocation entry point
kghalp    KGH: Allocate permanent memory
kghfnd    KGH: Find a chunk of at least the minimum size
kghfrunp    KGH: Ask client to free unpinned space
kghfrx    Free extent. This is called when a heap is unpinned to request that it
kghgex    KGH: Get a new extent
kghnospc    KGH: There is no space available in the heap
kghpmalo    KGH: Find and return a permanent chunk of space
kghxal    Allocate a fixed size piece of shared memory.
kglhpd    KGL HeaP Deallocate
kglobcl    KGL OBject CLear all tables
kglpnal    KGL PiN ALlOcate
kglpnc    KGL: PiN heaps and load data pieces of a Cursor object
kglpndl    KGL PiN DeLete
kglrfcl    KGL ReFerence CLear
kgmexec    KGM EXECute
kksalx    ALlocate ‘size’ bytes from the eXecution-time heap
kkscls    KKS: Close the cursor, user is done with it
kkspfda    Multiple context area management
kkssbt    KKS: set bind types
kksscl    KKS: scan child list?
koklcopy    KOK Lob COPY.
koklcpb2c    KOK Lob CoPy Binary data (BFILE/BLOB) into Clob
kolfgdir    KOL File Get DIRectory object, path and FileNames.
kpuexec    KPU: Execute
kpuexecv8    KPU: Execute V8
kpurcsc    KPU Remote Call with ServiceContext, Callbacks
kqdgtc    return an open and parsed cursor for the given statement
kqldprr    KQLD Parent Referential constraint Read
kqllod    KQL: database object load
kqlsadd    kqlsadd – KQLS ADD a new element to a subordinate set
kqlslod    KQLS: Load all subordinate set elements for a given heap
kslcll    KSL: Clean up after a given latch
kslcllt    Clean up after a given latch
kslilcr    invoke latch cleanup routine:
ksmapg    KSM: Callback function for allocating a PGA extent, calls OSD to alloc
ksmasg    Callback function for allocating an SGA extent.
kssxdl    KSS: delete SO ignoring all except severe errors. cleans latches
ksucln    KSUCLN: Cleanup detached process
ksudlc    delete call
ksudlp    KSU: delete process.called when user detaches or during cleanup by PMON
ksuxda    KSUCLN: Attempt to delete all processes that are marked dead.
ksuxdl    KSUCLN: Delete state object for PMON
ksuxfl    KSU: Find dead processes and cleanup their latches. Called by PMON
kxfpbgpc    Get Permanent Chunks
kxfpbgtc    Buffer Allocation Get Chunk
kxfpnfy    KXFP: NotiFY (component notifier)
kxfxse    KXFX: execute
kxstcls    Trace cursor closing
opicca    ORACLE Program Interface: Clear Context Area
opiclo    ORACLE Program Interface: CLOse cursor
opiprs    ORACLE Program Interface: PaRSe
opitca    OPITCA: sets up the context area
pextproc    Pefm call EXTernal PROCedure
qerocStart    This function creates a collection iterator row-source to iterate
qkadrv    QKADRV: allocate query structures
qkajoi    QKAJOI: Query Kernel Allocation: JOIn processing
qximeop    QXIM Evaluate OPerand
rpicls    RPI: Recursive Program Interface CLoSe
selexe    SELEXE: prepare context area for fetch
xtyinpr    XTY Insert Numeric PRecision operator


ORA-600 Lookup Error Categories

Applies to:

Oracle Server – Enterprise Edition – Version:
Oracle Server – Personal Edition – Version:
Oracle Server – Standard Edition – Version:
Information in this document applies to any platform.
Checked for relevance 04-Jun-2009


This note aims to provide a high level overview of the internal errors which may be encountered on the Oracle Server (sometimes referred to as the Oracle kernel). It is written to provide a guide to where a particular error may live and give some indication as to what the impact of the problem may be. Where a problem is reproducible and connected with a specific feature, you might obviously try not using the feature. If there is a consistent nature to the problem, it is good practice to ensure that the latest patchsets are in place and that you have taken reasonable measures to avoid known issues.

For repeatable issues which the ora-600 tool has not listed a likely cause , it is worth constructing a test case. Where this is possible, it greatly assists in the resolution time of any issue. It is important to remember that, in a many instances , the Server is very flexible and a workaround can very often be achieved.

Scope and Application

This bulletin provides Oracle DBAs with an overview of internal database errors.

Disclaimer: Every effort has been made to provide a reasonable degree of accuracy in what has been stated. Please consider that the details provided only serve to provide an indication of functionality and, in some cases, may not be wholly correct.

ORA-600 Lookup Error Categories

In the Oracle Server source, there are two types of ora-600 error :

  • the first parameter is a number which reflects the source component or layer the error is connected with; or
  • the first parameter is a mnemonic which indicates the source module where the error originated. This type of internal error is now used in preference to an internal error number.

Both types of error may be possible in the Oracle server.

Internal Errors Categorised by number range

The following table provides an indication of internal error codes used in the Oracle server. Thus, if ora-600[X] is encountered, it is possible to glean some high level background information : the error in generated in the Y layer which indicates that there may be a problem with Z.

Ora-600 Base Functionality Description
1 Service Layer The service layer has within it a variety of service related components which are associated with in memory related activities in the SGA such as, for example : the management of Enqueues, System Parameters, System state objects (these objects track the use of structures in the SGA by Oracle server processes), etc.. In the main, this layer provides support to allow process communication and provides support for locking and the management of structures to support multiple user processes connecting and interacting within the SGA. Note : vos  – Virtual Operating System provides features to support the functionality above.  As the name suggests it provides base functionality in much the same way as is provided by an Operating System.

Ora-600 Base Functionality Description
1 vos Component notifier
100 vos Debug
300 vos Error
500 vos Lock
700 vos Memory
900 vos System Parameters
1100 vos System State object
1110 vos Generic Linked List management
1140 vos Enqueue
1180 vos Instance Locks
1200 vos User State object
1400 vos Async Msgs
1700 vos license Key
1800 vos Instance Registration
1850 vos I/O Services components
2000 Cache Layer Where errors are generated in this area, it is advisable to check whether the error is repeatable and whether the error is perhaps associated with recovery or undo type operations; where this is the case and the error is repeatable, this may suggest some kind of hardware or physical issue with a data file, control file or log file. The Cache layer is responsible for making the changes to the underlying files and well as managing the related memory structures in the SGA. Note : rcv indicates recovery. It is important to remember that the Oracle cache layer is effectively going through the same code paths as used by the recovery mechanism.

Ora-600 Base Functionality Description
2000 server/rcv Cache Op
2100 server/rcv Control File mgmt
2200 server/rcv Misc (SCN etc.)
2400 server/rcv Buffer Instance Hash Table
2600 server/rcv Redo file component
2800 server/rcv Db file
3000 server/rcv Redo Application
3200 server/cache Buffer manager
3400 server/rcv Archival & media recovery component
3600 server/rcv recovery component
3700 server/rcv Thread component
3800 server/rcv Compatibility segment

It is important  to consider when the error occurred and the context in which the error was generated. If the error does not reproduce, it may be an in memory issue.

4000 Transaction Layer Primarily the transaction layer is involved with maintaining structures associated with the management of transactions.  As with the cache layer , problems encountered in this layer may indicate some kind of issue at a physical level. Thus it is important to try and repeat the same steps to see if the problem recurs.

Ora-600 Base Functionality Description
4000 server/txn Transaction Undo
4100 server/txn Transaction Undo
4210 server/txn Transaction Parallel
4250 server/txn Transaction List
4300 space/spcmgmt Transaction Segment
4400 txn/lcltx Transaction Control
4450 txn/lcltx distributed transaction control
4500 txn/lcltx Transaction Block
4600 space/spcmgmt Transaction Table
4800 dict/rowcache Query Row Cache
4900 space/spcmgmt Transaction Monitor
5000 space/spcmgmt Transaction Extent

It is important to try and determine what the object involved in any reproducible problem is. Then use the analyze command. For more information, please refer to the analyze command as detailed in the context of  Note:28814.1; in addition, it may be worth using the dbverify as discussed in Note:35512.1.

6000 Data Layer The data layer is responsible for maintaining and managing the data in the database tables and indexes. Issues in this area may indicate some kind of physical issue at the object level and therefore, it is important to try and isolate the object and then perform an anlayze on the object to validate its structure.

Ora-600 Base Functionality Description
6000 ram/data
data, analyze command and index related activity
7000 ram/object lob related errors
8000 ram/data general data access
8110 ram/index index related
8150 ram/object general data access

Again, it is important to try and determine what the object involved in any reproducible problem is. Then use the analyze command. For more information, please refer to the analyze command as detailed in the context of  Note:28814.1; in addition, it may be worth using the dbverify as discussed in Note:35512.1.

12000 User/Oracle Interface & SQL Layer Components This layer governs the user interface with the Oracle server. Problems generated by this layer usually indicate : some kind of presentation or format error in the data received by the server, i.e. the client may have sent incomplete information; or there is some kind of issue which indicates that the data is received out of sequence

Ora-600 Base Functionality Description
12200 progint/kpo
lob related
errors at interface level on server side, xa , etc.
12300 progint/if OCI interface to coordinating global transactions
12400 sqlexec/rowsrc table row source access
12600 space/spcmgmt operations associated with tablespace : alter / create / drop operations ; operations associated with create table / cluster
12700 sqlexec/rowsrc bad rowid
13000 dict/if dictionary access routines associated with kernel compilation
13080 ram/index kernel Index creation
13080 sqllang/integ constraint mechanism
13100 progint/opi archival and Media Recovery component
13200 dict/sqlddl alter table mechanism
13250 security/audit audit statement processing
13300 objsupp/objdata support for handling of object generation and object access
14000 dict/sqlddl sequence generation
15000 progint/kpo logon to Oracle
16000 tools/sqlldr sql loader related

You should try and repeat the issue and with the use of sql trace , try and isolate where exactly the issue may be occurring within the application.

14000 System Dependent Component internal error values This layer manages interaction with the OS. Effectively it acts as the glue which allows the Oracle server to interact with the OS. The types of operation which this layer manages are indicated as follows.

Ora-600 Base Functionality Description
14000 osds File access
14100 osds Concurrency management;
14200 osds Process management;
14300 osds Exception-handler or signal handler management
14500 osds Memory allocation
15000 security/dac,
local user access validation; challenge / response activity for remote access validation; auditing operation; any activities associated with granting and revoking of privileges; validation of password with external password file
15100 dict/sqlddl this component manages operations associated with creating, compiling (altering), renaming, invalidating, and dropping  procedures, functions, and packages.
15160 optim/cbo cost based optimizer layer is used to determine optimal path to the data based on statistical information available on the relevant tables and indexes.
15190 optim/cbo cost based optimizer layer. Used in the generation of a new index to determine how the index should be created. Should it be constructed from the table data or from another index.
15200 dict/shrdcurs used to in creating sharable context area associated with shared cursors
15230 dict/sqlddl manages the compilation of triggers
15260 dict/dictlkup
dictionary lookup and library cache access
15400 server/drv manages alter system and alter session operations
15410 progint/if manages compilation of pl/sql packages and procedures
15500 dict/dictlkup performs dictionary lookup to ensure semantics are correct
15550 sqlexec/execsvc
hash join execution management;
parallel row source management
15600 sqlexec/pq component provides support for Parallel Query operation
15620 repl/snapshots manages the creation of snapshot or materialized views as well as related snapshot / MV operations
15640 repl/defrdrpc layer containing various functions for examining the deferred transaction queue and retrieving information
15660 jobqs/jobq manages the operation of the Job queue background processes
15670 sqlexec/pq component provides support for Parallel Query operation
15700 sqlexec/pq component provides support for Parallel Query operation; specifically mechanism for starting up and shutting down query slaves
15800 sqlexec/pq component provides support for Parallel Query operation
15810 sqlexec/pq component provides support for Parallel Query operation; specifically functions for creating mechanisms through which Query co-ordinator can communicate with PQ slaves;
15820 sqlexec/pq component provides support for Parallel Query operation
15850 sqlexec/execsvc component provides support for the execution of SQL statements
15860 sqlexec/pq component provides support for Parallel Query operation
16000 loader sql Loader direct load operation;
16150 loader this layer is used for ‘C’ level call outs to direct loader operation;
16200 dict/libcache this is part of library Cache operation. Amongst other things it manages the dependency of SQL objects and tracks who is permitted to access these objects;
16230 dict/libcache this component is responsible for managing access to remote objects as part of library Cache operation;
16300 mts/mts this component relates to MTS (Multi Threaded Server) operation
16400 dict/sqlddl this layer contains functionality which allows tables to be loaded / truncated and their definitions to be modified. This is part of dictionary operation;
16450 dict/libcache this layer layer provides support for multi-instance access to the library cache; this functionality is applicable therefore to OPS environments;
16500 dict/rowcache this layer provides support to load / cache Oracle’s dictionary in memory in the library cache;
16550 sqlexec/fixedtab this component maps data structures maintained in the Oracle code to fixed tables such that they can be queried using the SQL layer;
16600 dict/libcache this layer performs management of data structures within the library cache;
16651 dict/libcache this layer performs management of dictionary related information within library Cache;
16701 dict/libcache this layer provides library Cache support to support database creation and forms part of the bootstrap process;
17000 dict/libcache this is the main library Cache manager. This Layer maintains the in memory representation of cached sql statements together will all the necessary support that this demands;
17090 generic/vos this layer implementations error management operations: signalling errors, catching  errors, recovering from errors, setting error frames, etc.;
17100 generic/vos Heap manager. The Heap manager manages the storage of internal data in an orderly and consistent manner. There can be many heaps serving various purposes; and heaps within heaps. Common examples are the SGA heap, UGA heap and the PGA heap. Within a Heap there are consistency markers which aim to ensure that the Heap is always in a consistent state. Heaps are use extensively and are in memory structures – not on disk.
17200 dict/libcache this component deals with loading remote library objects into the local library cache with information from the remote database.
17250 dict/libcache more library cache errors ; functionality for handling pipe operation associated with dbms_pipe
17270 dict/instmgmt this component manages instantiations of procedures, functions, packages, and cursors in a session. This provides a means to keep track of what has been loaded in the event of process death;
17300 generic/vos manages certain types of memory allocation structure.  This functionality is an extension of the Heap manager.
17500 generic/vos relates to various I/O operations. These relate to async i/o operation,  direct i/o operation and the management of writing buffers from the buffer cache by potentially a number of database writer processes;
17625 dict/libcache additional library Cache supporting functions
17990 plsql plsql ‘standard’ package related issues
18000 txn/lcltx transaction and savepoint management operations
19000 optim/cbo cost based optimizer related operations
20000 ram/index bitmap index and index related errors.
20400 ram/partnmap operations on partition related objects
20500 server/rcv server recovery related operation
21000 repl/defrdrpc,
replication related features
23000 oltp/qs AQ related errors.
24000 dict/libcache operations associated with managing stored outlines
25000 server/rcv tablespace management operations

Internal Errors Categorised by mnemonic

The following table details mnemonics error stems which are possible. If you have encountered : ora-600[kkjsrj:1] for example, you should look down the Error Mnemonic column (errors in alphabetical order) until you find the matching stem. In this case, kkj indicates that something unexpected has occurred in job queue operation.

Error Mnemonic(s) Functionality Description
ain ainp ram/index ain – alter index; ainp –  alter index partition management operation
apacb optim/rbo used by optimizer in connect by processing
atb atbi atbo ctc ctci cvw dict/sqlddl alter table , create table (IOT) or cluster operations as well as create view related operations (with constraint handling functionality)
dbsdrv sqllang/parse alter / create database operation
ddfnet progint/distrib various distributed operations on remote dictionary
delexe sqlexec/dmldrv manages the delete statement operation
dix ram/index manages drop index or validate index operation
dtb dict/sqlddl manages drop table operation
evaa2g evah2p evaa2g dbproc/sqlfunc various functions involves in evaluating operand outcomes such as : addition , average, OR operator, bites AND , bites OR, concatenation, as well as Oracle related functions : count(), dump() , etc. The list is extensive.
expcmo expgon dbproc/expreval handles expression evaluation with respect to two operands being equivalent
gra security/dac manages the granting and revoking of privilege rights to a user
gslcsq plsldap support for operations with an LDAP server
insexe sqlexec/dmldrv handles the insert statement operation
jox progint/opi functionality associated with the Java compiler and with the Java runtime environment within the Server
k2c k2d progint/distrib support for database to database operation in distributed environements as well as providing, with respect to the 2-phase commit protocol, a globally unique Database id
k2g k2l txn/disttx support for the 2 phase commit protocol protocol and the coordination of the various states in managing the distributed transaction
k2r k2s k2sp progint/distrib k2r – user interface for managing distributed transactions and combining distributed results ; k2s – handles logging on, starting a transaction, ending a transaction and recovering a transaction; k2sp – management of savepoints in a distributed environment.
k2v txn/disttx handles distributed recovery operation
kad cartserv/picklercs handles OCIAnyData implementation
kau ram/data manages the modification of indexes for inserts, updates and delete operations for IOTs as well as modification of indexes for IOTs
kcb kcbb kcbk kcbl kcbs kcbt kcbw kcbz cache manages Oracle’s buffer cache operation as well as operations used by capabilities such as direct load, has clusters , etc.
kcc kcf rcv manages and coordinates operations on the control file(s)
kcit context/trigger internal trigger functionality
kck rcv compatibility related checks associated with the compatible parameter
kcl cache background lck process which manages locking in a RAC or parallel server multiple instance environment
kco kcq kcra kcrf kcrfr kcrfw kcrp kcrr kcs kct kcv rcv various buffer cache operation such as quiesce operation , managing fast start IO target, parallel recovery operation , etc.
kd ram/data support for row level dependency checking and some log miner operations
kda ram/analyze manages the analyze command and collection of statistics
kdbl kdc kdd ram/data support for direct load operation, cluster space management and deleting rows
kdg ram/analyze gathers information about the underlying data and is used by the analyze command
kdi kdibc3 kdibco kdibh kdibl kdibo kdibq kdibr kdic kdici kdii kdil kdir kdis kdiss kdit kdk ram/index support of the creation of indexes on tables an IOTs and index look up
kdl kdlt ram/object lob and temporary lob management
kdo ram/data operations on data such as inserting a row piece or deleting a row piece
kdrp ram/analyze underlying support for operations provided by the dbms_repair package
kds kdt kdu ram/data operations on data such as retrieving a row and updating existing row data
kdv kdx ram/index functionality for dumping index and managing index blocks
kfc kfd kfg asm support for ASM file and disk operations
kfh kfp kft rcv support for writing to file header and transportable tablespace operations
kgaj kgam kgan kgas kgat kgav kgaz argusdbg/argusdbg support for Java Debug Wire Protocol (JDWP) and debugging facilites
kgbt kgg kgh kghs kghx kgkp vos kgbt – support for BTree operations; kgg – generic lists processing; kgh – Heap Manager : managing the internal structures withing the SGA / UGA / PGA and ensures their integrity; kghs – Heap manager with Stream support; kghx – fixed sized shared memory manager; kgkp – generic services scheduling policies
kgl kgl2 kgl3 kgla kglp kglr kgls dict/libcache generic library cache operation
kgm kgmt ilms support for inter language method services – or calling one language from another
kgrq kgsk kgski kgsn kgss vos support for priority queue and scheduling; capabilities for Numa support;  Service State object manager
kgupa kgupb kgupd0 kgupf kgupg kgupi kgupl kgupm kgupp kgupt kgupx kguq2 kguu vos Service related activities activities associated with for Process monitor (PMON); spawning or creating of background processes; debugging; managing process address space;  managing the background processes; etc.
kgxp vos inter process communication related functions
kjak kjat kjb kjbl kjbm kjbr kjcc kjcs kjctc kjcts kjcv kjdd kjdm kjdr kjdx kjfc kjfm kjfs kjfz kjg kji kjl kjm kjp kjr kjs kjt kju kjx ccl/dlm dlm related functionality ; associated with RAC or parallel server operation
kjxgf kjxgg kjxgm kjxgn kjxgna kjxgr ccl/cgs provides communication & synchronisation associated with GMS or OPS related functionality as well as name service and OPS Instance Membership Recovery Facility
kjxt ccl/dlm DLM request message management
kjzc kjzd kjzf kjzg kjzm ccl/diag support for diagnosibility amongst OPS related services
kkb dict/sqlddl support for operatoins which load/change table definitions
kkbl kkbn kkbo objsupp/objddl support for tables with lobs , nested tables and varrays as well as columns with objects
kkdc kkdl kkdo dict/dictlkup support for constraints, dictionary lookup and dictionary support for objects
kke optim/cbo query engine cost engine; provides support functions that provide cost estimates for queries under a number of different circumstances
kkfd sqlexec/pq support for performing parallel query operation
kkfi optim/cbo optimizer support for matching of expressions against functional ndexes
kkfr kkfs sqlexec/pq support for rowid range handling as well as for building parallel query query operations
kkj jobqs/jobq job queue operation
kkkd kkki dict/dbsched resource manager related support. Additionally, provides underlying functions provided by dbms_resource_manager and dbms_resource_manager_privs packages
kklr dict/sqlddl provides functions used to manipulate LOGGING and/or RECOVERABLE attributes of an object (non-partitioned table or index or  partitions of a partitioned table or index)
kkm kkmi dict/dictlkup provides various semantic checking functions
kkn ram/analyze support for the analyze command
kko kkocri optim/cbo Cost based Optimizer operation : generates alternative execution plans in order to find the optimal / quickest access to the data.  Also , support to determine cost and applicability of  scanning a given index in trying to create or rebuild an index or a partition thereof
kkpam kkpap ram/partnmap support for mapping predicate keys expressions to equivalent partitions
kkpo kkpoc kkpod dict/partn support for creation and modification of partitioned objects
kkqg kkqs kkqs1 kkqs2 kkqs3 kkqu kkqv kkqw optim/vwsubq query rewrite operation
kks kksa kksh kksl kksm dict/shrdcurs support for managing shared cursors/ shared sql
kkt dict/sqlddl support for creating, altering and dropping trigger definitions as well as handling the trigger operation
kkxa repl/defrdrpc underlying support for dbms_defer_query package operations
kkxb dict/sqlddl library cache interface for external tables
kkxl dict/plsicds underlying support for the dbms_lob package
kkxm progint/opi support for inter language method services
kkxs dict/plsicds underlying support for the dbms_sys_sql package
kkxt repl/trigger support for replication internal trigger operation
kkxwtp progint/opi entry point into the plsql compiler
kky drv support for alter system/session commands
kkz kkzd kkzf kkzg kkzi kkzj kkzl kkzo kkzp kkzq kkzr kkzu kkzv repl/snapshot support for snapshots or Materialized View validation and operation
kla klc klcli klx tools/sqlldr support for direct path sql loader operation
kmc kmcp kmd kmm kmr mts/mts support for Multi Threaded server operation (MTS) : manange and operate the virtual circuit mechanism, handle the dispatching of massages, administer shared servers and for collecting and maintaining statistics associated with MTS
knac knafh knaha knahc knahf knahs repl/apply replication apply operation associated with Oracle streams
kncc repl/repcache support for replication related information stored and maintained in library cache
kncd knce repl/defrdrpc replication related enqueue and dequeue of transction data as well as other queue related operations
kncog repl/repcache support for loading replicaiton object group information into library cache
kni repl/trigger support for replication internal trigger operation
knip knip2 knipi knipl knipr knipu knipu2 knipx repl/intpkg support for replication internal package operation.
kno repl/repobj support for replication objects
knp knpc knpcb knpcd knpqc knps repl/defrdrpc operations assocaied with propagating transactions to a remote node and coordination of this activity.
knst repl/stats replication statistics collection
knt kntg kntx repl/trigger support for replication internal trigger operation
koc objmgmt/objcache support for managing ADTs objects in the OOCI heap
kod objmgmt/datamgr support for persistent storage for objects : for read/write objects, to manage object IDs, and to manage object concurrency and recovery.
koh objmgmt/objcache object heap manager provides memory allocation services for objects
koi objmgmt/objmgr support for object types
koka objsupp/objdata support for reading images, inserting images, updating images, and deleting images based on object references (REFs).
kokb kokb2 objsupp/objsql support for nested table objects
kokc objmgmt/objcache support for pinning , unpinning and freeing objects
kokd objsupp/datadrv driver on the server side for managing objects
koke koke2 koki objsupp/objsql support for managing objects
kokl objsupp/objdata lob access
kokl2 objsupp/objsql lob DML and programmatic interface support
kokl3 objsupp/objdata object temporary LOB support
kokle kokm objsupp/objsql object SQL evaluation functions
kokn objsupp/objname naming support for objects
koko objsupp/objsup support functions to allow oci/rpi to communicate with Object Management Subsystem (OMS).
kokq koks koks2 koks3 koksr objsupp/objsql query optimisation for objects , semantic checking and semantic rewrite operations
kokt kokt2 kokt3 objsupp/objddl object compilation type manager
koku kokv objsupp/objsql support for unparse object operators and object view support
kol kolb kole kolf kolo objmgmt/objmgr support for object Lob buffering , object lob evaluation and object Language/runtime functions for Opaque types
kope2 kopi2 kopo kopp2 kopu koputil kopz objmgmt/pickler 8.1 engine implementation,  implementation of image ops for 8.1+ image format together with various pickler related support functions
kos objsupp/objsup object Stream interfaces for images/objects
kot kot2 kotg objmgmt/typemgr support for dynamic type operations to create, delete, and  update types.
koxs koxx objmgmt/objmgt object generic image Stream routines and miscellaneous generic object functions
kpcp kpcxlt progint/kpc Kernel programmatic connection pooling and kernel programmatic common type XLT translation routines
kpki progint/kpki kernel programatic interface support
kpls cartserv/corecs support for string formatting operations
kpn progint/kpn support for server to server communication
kpoal8 kpoaq kpob kpodny kpodp kpods kpokgt kpolob kpolon kpon progint/kpo support for programmatic operations
kpor progint/opi support for streaming protocol used by replication
kposc progint/kpo support for scrollable cursors
kpotc progint/opi oracle side support functions for setting up trusted external procedure callbacks
kpotx kpov progint/kpo support for managing local and distributed transaction coordination.
kpp2 kpp3 sqllang/parse kpp2 – parse routines for dimensions;
kpp3 – parse support for create/alter/drop summary  statements
kprb kprc progint/rpi support for executing sql efficiently on the Oracle server side as well as for copying data types during rpi operations
kptsc progint/twotask callback functions provided to all streaming operation as part of replication functionality
kpu kpuc kpucp progint/kpu Oracle kernel side programmatic user interface,  cursor management functions and client side connection pooling support
kqan kqap kqas argusdbg/argusdbg server-side notifiers and callbacks for debug operations.
kql kqld kqlp dict/libcache SQL Library Cache manager – manages the sharing of sql statements in the shared pool
kqr dict/rowcache row cache management. The row cache consists of a set of facilities to provide fast access to table definitions and locking capabilities.
krbi krbx krby krcr krd krpi rcv Backup and recovery related operations :
krbi – dbms_backup_restore package underlying support.; krbx –  proxy copy controller; krby – image copy; krcr – Recovery Controlfile Redo; krd – Recover Datafiles (Media & Standby Recovery);  krpi – support for the package : dbms_pitr
krvg krvt rcv/vwr krvg – support for generation of redo associated with DDL; krvt – support for redo log miner viewer (also known as log miner)
ksa ksdp ksdx kse ksfd ksfh ksfq ksfv ksi ksim ksk ksl ksm ksmd ksmg ksn ksp kspt ksq ksr kss ksst ksu ksut vos support for various kernel associated capabilities
ksx sqlexec/execsvc support for query execution associated with temporary tables
ksxa ksxp ksxr vos support for various kernel associated capabilities in relation to OPS or RAC operation
kta space/spcmgmt support for DML locks and temporary tables associated with table access
ktb ktbt ktc txn/lcltx transaction control operations at the block level : locking block, allocating space within the block , freeing up space, etc.
ktec ktef ktehw ktein ktel kteop kteu space/spcmgmt support for extent management operations :
ktec – extent concurrency operations; ktef – extent format; ktehw – extent high water mark operations; ktein – extent  information operations; ktel – extent support for sql loader; kteop – extent operations : add extent to segment, delete extent, resize extent, etc. kteu – redo support for operations changing segment header / extent map
ktf txn/lcltx flashback support
ktfb ktfd ktft ktm space/spcmgmt ktfb – support for bitmapped space manipulation of files/tablespaces;  ktfd – dictionary-based extent management; ktft – support for temporary file manipulation; ktm – SMON operation
ktp ktpr ktr ktri txn/lcltx ktp – support for parallel transaction operation; ktpr – support for parallel transaction recovery; ktr – kernel transaction read consistency;
ktri – support for dbms_resumable package
ktsa ktsap ktsau ktsb ktscbr ktsf ktsfx ktsi ktsm ktsp ktss ktst ktsx ktt kttm space/spcmgmt support for checking and verifying space usage
ktu ktuc ktur ktusm txn/lcltx internal management of undo and rollback segments
kwqa kwqi kwqic kwqid kwqie kwqit kwqj kwqm kwqn kwqo kwqp kwqs kwqu kwqx oltp/qs support for advanced queuing :
kwqa – advanced queue administration; kwqi – support for AQ PL/SQL trusted callouts; kwqic – common AQ support functions; kwqid – AQ dequeue support; kwqie – AQ enqueu support ; kwqit – time management operation ; kwqj – job queue scheduler for propagation; kwqm – Multiconsumer queue IOT support; kwqn – queue notifier; kwqo – AQ support for checking instType checking options; kwqp – queueing propagation; kwqs – statistics handling; kwqu – handles lob data. ; kwqx – support for handling transformations
kwrc kwre oltp/re rules engine evaluation
kxcc kxcd kxcs sqllang/integ constraint processing
kxdr sqlexec/dmldrv DML driver entrypoint
kxfp kxfpb kxfq kxfr kxfx sqlexec/pq parallel query support
kxhf kxib sqlexec/execsvc khhf- support for hash join file and memory management; kxib – index buffering operations
kxs dict/instmgmt support for executing shared cursors
kxti kxto kxtr dbproc/trigger support for trigger operation
kxtt ram/partnmap support for temporary table operations
kxwph ram/data support for managing attributes of the segment of a table / cluster / table-partition
kza security/audit support for auditing operations
kzar security/dac support for application auditing
kzck security/crypto encryption support
kzd security/dac support for dictionary access by security related functions
kzec security/dbencryption support inserting and retrieving encrypted objects into and out of the database
kzfa kzft security/audit support for fine grained auditing
kzia security/logon identification and authentication operations
kzp kzra kzrt kzs kzu kzup security/dac security related operations associated with privileges
msqima msqimb sqlexec/sqlgen support for generating sql statments
ncodef npi npil npixfr progint/npi support for managing remote network connection from  within the server itself
oba sqllang/outbufal operator buffer allocate for various types of operators : concatenate, decode, NVL, etc.  the list is extensive.
ocik progint/oci OCI oracle server functions
opiaba opidrv opidsa opidsc opidsi opiexe opifch opiino opilng opipar opipls opirip opitsk opix progint/opi OPI Oracle server functions – these are at the top of the server stack and are called indirectly by ythe client in order to server the client request.
orlr objmgmt/objmgr support for  C langauge interfaces to user-defined types (UDTs)
orp objmgmt/pickler oracle’s external pickler / opaque type interfaces
pesblt pfri pfrsqc plsql/cox pesblt – pl/sql built in interpreter; pfri – pl/sql runtime; pfrsqc – pl/sql callbacks for array sql and dml with returning
piht plsql/gen/utl support for pl/sql implementation of utl_http package
pirg plsql/cli/utl_raw support for pl/sql implementation of utl_raw package
pism plsql/cli/utl_smtp support for pl/sql implementation of utl_smtp package
pitcb plsql/cli/utl_tcp support for pl/sql implementation of utl_tcp package
piur plsql/gen/utl_url support for pl/sql implementation of utl_url package
plio plsql/pkg pl/sql object instantiation
plslm plsql/cox support for NCOMP processing
plsm pmuc pmuo pmux objmgmt/pol support for pl/sql handling of collections
prifold priold plsql/cox support to allow rpc forwarding to an older release
prm sqllang/param parameter handling associated with sql layer
prsa prsc prssz sqllang/parse prsa – parser for alter cluster command; prsc – parser for create database command; prssz – support for parse context to be saved
psdbnd psdevn progint/dbpsd psdbnd – support for managing bind variables; psdevn – support for pl/sql debugger
psdicd progint/plsicds small number of ICD to allow pl/sql to call into ‘C’ source
psdmsc psdpgi progint/dbpsd psdmsc – pl/sql system dependent miscellaneous functions ; psdpgi – support for opening and closing cursors in pl/sql
psf plsql/pls pl/sql service related functions for instantiating called pl/sql unit in library cache
qbadrv qbaopn sqllang/qrybufal provides allocation of buffer and control structures in query execution
qcdl qcdo dict/dictlkup qcdl – query compile semantic analysis; qcdo – query compile dictionary support for objects
qci dict/shrdcurs support for SQL language parser and semantic analyser
qcop qcpi qcpi3 qcpi4 qcpi5 sqllang/parse support for query compilation parse phase
qcs qcs2 qcs3 qcsji qcso dict/dictlkup support for semantic analysis by SQL compiler
qct qcto sqllang/typeconv qct – query compile type check operations; qcto –  query compile type check operators
qcu sqllang/parse various utilities provided for sql compilation
qecdrv sqllang/qryedchk driver performing high level checks on sql language query capabilities
qerae qerba qerbc qerbi qerbm qerbo qerbt qerbu qerbx qercb qercbi qerco qerdl qerep qerff qerfi qerfl qerfu qerfx qergi qergr qergs qerhc qerhj qeril qerim qerix qerjm qerjo qerle qerli qerlt qerns qeroc qeroi qerpa qerpf qerpx qerrm qerse qerso qersq qerst qertb qertq qerua qerup qerus qervw qerwn qerxt sqlexec/rowsrc row source operators :
qerae – row source (And-Equal) implementation; qerba – Bitmap Index AND row source; qerbc – bitmap index compaction row source; qerbi – bitmap index creation row source; qerbm – QERB Minus row source; qerbo  – Bitmap Index OR row source; qerbt – bitmap convert row source; qerbu – Bitmap Index Unlimited-OR row source; qerbx – bitmap index access row source; qercb – row source: connect by; qercbi – support for connect by; qerco – count row source; qerdl – row source delete; qerep – explosion row source; qerff – row source fifo buffer; qerfi  – first row row source; qerfl  – filter row source definition; qerfu – row source: for update; qerfx – fixed table row source; qergi – granule iterator row source; qergr – group by rollup row source; qergs – group by sort row source; qerhc – row sources hash clusters; qerhj – row source Hash Join;  qeril  – In-list row source; qerim – Index Maintenance row source; qerix – Index row source; qerjo – row source: join; qerle – linear execution row source implementation; qerli – parallel create index; qerlt – row source populate Table;  qerns  – group by No Sort row source; qeroc – object collection iterator row source; qeroi – extensible indexing query component; qerpa – partition row sources; qerpf – query execution row source: prefetch; qerpx – row source: parallelizer; qerrm – remote row source; qerse – row source: set implementation; qerso – sort row source; qersq – row source for sequence number; qerst  – query execution row sources: statistics; qertb – table row source; qertq  – table queue row source; qerua – row source : union-All;
qerup – update row source; qerus – upsert row source ; qervw – view row source; qerwn – WINDOW row source; qerxt – external table fetch row source
qes3t qesa qesji qesl qesmm qesmmc sqlexec/execsvc run time support for sql execution
qkacon qkadrv qkajoi qkatab qke qkk qkn qkna qkne sqlexec/rwsalloc SQL query dynamic structure allocation routines
qks3t sqlexec/execsvc query execution service associated with temp table transformation
qksmm qksmms qksop sqllang/compsvc qksmm –  memory management services for the SQL compiler; qksmms – memory management simulation services for the SQL compiler; qksop – query compilation service for operand processing
qkswc sqlexec/execsvc support for temp table transformation associated for with clause.
qmf xmlsupp/util support for ftp server; implements processing of ftp commands
qmr qmrb qmrs xmlsupp/resolver support hierarchical resolver
qms xmlsupp/data support for storage and retrieval of XOBs
qmurs xmlsupp/uri support for handling URIs
qmx qmxsax xmlsupp/data qmx – xml support; qmxsax – support for handling sax processing
qmxtc xmlsupp/sqlsupp support for ddl  and other operators related to the sql XML support
qmxtgx xmlsupp support for transformation : ADT -> XML
qmxtsk xmlsupp/sqlsupp XMLType support functions
qsme summgmt/dict summary management expression processing
qsmka qsmkz dict/dictlkup qsmka – support to analyze request in order to determine whether a summary could be created that would be useful; qsmkz – support for create/alter summary semantic analysis
qsmp qsmq qsmqcsm qsmqutl summgmt/dict qsmp – summary management partition processing; qsmq – summary management dictionary access; qsmqcsm – support for create / drop / alter summary and related dimension operations; qsmqutl – support for summaries
qsms summgmt/advsvr summary management advisor
qxdid objsupp/objddl support for domain index ddl operations
qxidm objsupp/objsql support for extensible index dml operations
qxidp objsupp/objddl support for domain index ddl partition operations
qxim objsupp/objsql extensible indexing support for objects
qxitex qxopc qxope objsupp/objddl qxitex – support for create / drop indextype; qxope – execution time support for operator  callbacks; qxope – execution time support for operator DDL
qxopq qxuag qxxm objsupp/objsql qxopq – support for queries with user-defined operators; qxuag – support for user defined aggregate processing; qxxm – queries involving external tables
rfmon rfra rfrdb rfrla rfrm rfrxpt drs implements 9i data guard broker monitor
rnm dict/sqlddl manages rename statement operation
rpi progint/rpi recursive procedure interface which handles the the environment setup where multiple recursize statements are executed from one top level statement
rwoima sqlexec/rwoprnds row operand operations
rwsima sqlexec/rowsrc row source implementation/retrieval according to the defining query
sdbima sqlexec/sort manages and performs sort operation
selexe sqlexec/dmldrv handles the operation of select statement execution
skgm osds platform specific memory management rountines interfacing with O.S. allocation functions
smbima sor sqlexec/sort manages and performs sort operation
sqn dict/sqlddl support for parsing references to sequences
srdima srsima stsima sqlexec/sort manages and performs sort operation
tbsdrv space/spcmgmt operations for executing create / alter / drop tablespace and related supporting functions
ttcclr ttcdrv ttcdty ttcrxh ttcx2y progint/twotask two task common layer which provides high level interaction and negotiation functions for Oracle client when communicating with the server.  It also provides important function of converting client side data / data types into equivalent on the server and vice versa
uixexe ujiexe updexe upsexe sqlexec/dmldrv support for : index maintenance operations, the execution of the update statement and associated actions connected with update as well as the upsert command which combines the operations of update and insert
vop optim/vwsubq view optimisation related functionality
xct txn/lcltx support for the management of transactions and savepoint operations
xpl sqlexec/expplan support for the explain plan command
xty sqllang/typeconv type checking functions
zlke security/ols/intext label security error handling component

explore my oracle support using firefox 3.6

升级到FF3.6的朋友肯定发现了现在使用火狐浏览器访问my oracle support 时许多页面打开为空白页,譬如这篇介绍FF3.6与目前oracle support site兼容性的文章:

Firefox 3.6 Not Officially Supported by My Oracle Support

Although much of the functionality of My Oracle Support is accessible via Firefox 3.6, please be aware that Firefox 3.6 is not officially supported by My Oracle Support at this time. Please review the My Oracle Support FAQ (Knowledge Document #747252.5) for details on the current browser requirements for accessing My Oracle Support.

We are aware of a current issue when viewing Knowledge documents using Firefox 3.6. Using Firefox 3.6, when clicking on a link for a Knowledge document the document appears blank.  The workaround is to instead open the documents in a new tab or new window.

We are working on a fix for this issue and hope to have this resolved in the near future. We apologize for any inconvenience.

FF升级到3.6的时间已经超过一个月了;oracle support 之前曾发表将解决该兼容问题的声明,原本以为这只是一个小case,因该在数周内彻底解决。但目前又发布了暂时不官方支持的声明(大部分文档可以通过在新窗口内打开方式阅读)。

看起来大型网站的建设维护确实不是Oracle的特长,apex或者说htmldb又真的适合超大型web site吗?

发一个jd:System Engineer 博君一笑

   1.  Goal and mission:

A System Engineer has excellent and in-depth knowledge of a family of products (e.g. NagraVision CAS, iDTV & SMS, MediaGuard CAS). He is the recognised expert on that range of systems and is able to analyse and resolve complex problems under severe pressure. He recognises the importance of excellent customer relationships and is a good team player. He is highly motivated to develop his skills.

   2. Responsibility:

    * Is assigned to one or more accounts. Is responsible for the technical solution (installation, customer support, maintenance, etc) and works colsely with the program manager in charge of the account.
    * Creatively develops workaround solutions using broad knowledge of NagraVision products when no other solution is viable
    * Maintains a can-do attitude
    * Is fascinated by new technology and products
    * Handles most crisis situations confidently, is aware of customer consequences and knows when a call should be escalated
    * Recognises possible product design faults or potential enhancements and readily communicates this feedback to senior System Engineers for validation
    * Takes pride in solving customer problems effectively and is intolerant of poor quality work
    * Lives up to customer expectations and updates them on changes
    * Is respectful of and helpful to other engineers and enjoys gaining and sharing knowledge
    * Attends training on products, services and behavioural skills related to the position
    * Provides tuition on NagraVision products to customers and to NagraVision Engineers, under the managerial responsibility of the Head of System Engineering.
    * Participates in Hotline turns, under the managerial responsibility of the Head of System Engineering.
    * Execute security measures on the systems.
    * Provide quick response time to meet customer satisfaction.

   3. Reporting line

Reporting to: Head of System Engineering

Direct Report: Igor Ferigutti

   4. Interfaces

    * Daily contact with Program/Deployment Manager to inform on current status and plan the next steps of a project
    * Information to and from Customers using live communication, conference calls and e-mail reports
    * Collaboration with Central Services’ staff for problem solving.
    * Collaboration with Product Development for bug reporting and problem solving
    * Regular communication with Head of System Engineering to keep the resource planning up-to-date.

   5. Skills

    * Is recognised to have excellent knowledge of a set of NagraVision products
    * Mostly self-reliant, but requires direction under some situations.
    * Has a good telephone manner and remote diagnosis skills.
    * Is fluent in English, any other Asian language is an asset.
    * Recognised expertise in the UNIX platforms and Windows.
    * Ability to perform complex queries on Oracle or Sybase databases.
    * Recognised ability to analyse TCP/IP networking problems.
    * Ability to demonstrate certain NagraVision products or to provide training on them.
    * Demonstrates good communication skills and reasonable inter-personal skills.
    * Working knowledge of the Ticketing and Remote access tools.
    * Ability to complete problem analysis and do troubleshooting of simple multi-cluster systems.
    * Demonstrates high customer service awareness.
    * Works effectively under pressure.



以下文本摘自metalink doc:

This note attempts to clarify the cluster_interconnects parameter and the
platforms on which the implementation has been made. A brief explanation on
the workings of the parameter has also been presented in this note.
This is also one of the most frequently questions related to cluster and RAC
installations on most sites and forms a part of the prerequisite as well.


November 2002

1.  What is the parameter CLUSTER_INTERCONNECTS for ?
2.  Is the parameter CLUSTER_INTERCONNECTS available for all platforms ?
3.  How is the Interconnect recognized on Linux ?
4.  Where could I find more information on this parameter ?
5.  How to detect which interconnect is used ?
6.  Cluster_Interconnects is mentioned in the 9i RAC administration
    guide as a Solaris specific parameter, is this the only platform
    where this parameter is available ?
7.  Are there any side effects for this parameter, namely affecting normal
    operations ?
8.  Is the parameter OPS_INTERCONNECTS which was available in 8i similar
    to this parameter ?
9.  Does Cluster_interconnect allow failover from one Interconnect to another
    Interconnect ?
10. Is the size of messages limited on the Interconnect ?
11. How can you see which protocoll is being used by the instances ?
12. Can the parameter CLUSTER_INTERCONNECTS be changed dynamically during runtime ?

1. What is the parameter CLUSTER_INTERCONNECTS for ?

This parameter is used to influence the selection of the network interface
for Global Cache Service (GCS) and Global Enqueue Service (GES) processing.

This note does not compare the other elements of 8i OPS with 9i RAC
because of substantial differences in the behaviour of both architectures.
Oracle 9i RAC has certain optimizations which attempt to transfer most of
the information required via the interconnects so that the number of disk
reads are minimized. This behaviour known as Cache fusion phase 2 is summarised
in Note 139436.1
The definition of the interconnnect is a private network which
will be used to transfer the cluster traffic and Oracle Resource directory
information and blocks to satisfy queries. The technical term for that is
cache fusion.

The CLUSTER_INTERCONNECTS should be used when
– you want to override the default network selection
– bandwith of a single interconnect does not meet the bandwith requirements of
  a Real Application Cluster database

The syntax of the parameter is:

Where if<n> is an IP address in standard dotted-decimal format, for example, Subsequent platform implementations may specify interconnects
with different syntaxes.
2. Is the parameter CLUSTER_INTERCONNECTS available for all platforms ?


This parameter is configurable on most platforms.
This parameter can not be used on Linux.

The following Matrix shows when the parameter was introduced on which platform:

Operating System    Available since
AIX                   9.2.0
HP/UX                 9.0.1
HP Tru64              9.0.1
HP OPenVMS            9.0.1
Sun Solaris           9.0.1

3.  How is the Interconnect recognized on Linux ?

Since Oracle9i CLUSTER_INTECONNETCS can be used to change the interconnect.
A patch is also available for under Patch 4751660.
Before the Oracle implementation for the interface selection reads the ‘private hostname’
in the cmcfg.ora file and uses the corresponding ip-address for the interconnect.
If no private hostname is available the public hostname will be used.
4.  Where could I find information on this parameter ?


The parameter is documented in the following books:
Oracle9i Database Reference Release 2 (9.2)
Oracle9i Release 1 (9.0.1) New Features in Oracle9i Database Reference –
                   What’s New in Oracle9i Database Reference?
Oracle9i Real Application Clusters Administration Release 2 (9.2)
Oracle9i Real Application Clusters Deployment and Performance Release 2 (9.2)

Also port specific documentation may contain information about the usage of
the cluster_interconnects parameter.

Documentation can be viewed on
Note 162725.1: OPS/RAC VMS: Using alternate TCP Interconnects on 8i OPS
               and 9i RAC on OpenVMS

Note 151051.1: Init.ora Parameter “CLUSTER_INTERCONNECTS” Reference Note

5. How to detect which interconnect is used ?
    The following commands show which interconnect is used for UDP or TCP:
    sqlplus> connect / as sysdba
             oradebug setmypid
             oradebug ipc

    The corresponding trace can be found in the user_dump_dest directory and for
    example contains the following information in the last couple of lines:

           SKGXPCTX: 0x32911a8 ctx
           admno 0x12f7150d admport:
           SSKGXPT 0x3291db8 flags SSKGXPT_READPENDING     info for network 0
                 socket no 9     IP         UDP 43307
                 sflags SSKGXPT_WRITESSKGXPT_UP
                 info for network 1
                 socket no 0     IP      UDP 0
                 sflags SSKGXPT_DOWN
           context timestamp 0x1ca5
                 no ports
   Please note that on some platforms and versions (Oracle9i on Windows)
   you might see an ORA-70 when the command oradebug ipc has not been

   When  other protocols such as LLT, HMP or RDG are used, then the trace file will not
   reveal an IP address.
6.  Cluster_Interconnects is mentioned in the 9i RAC administration
    guide as a Solaris specific parameter, is this the only platform
    where this parameter is available ?


This information that this parameter works on Solaris only is incorrect. Please
check the answer for question number 2 for the complete list of platforms for the same.

7.  Are there any side effects for this parameter, namely affecting normal
    operations ?

When you set CLUSTER_INTERCONNECTS in cluster configurations, the
interconnect high availability features are not available. In other words,
an interconnect failure that is normally unnoticeable would instead cause
an Oracle cluster failure as Oracle still attempts to access the network
interface which has gone down. Using this parameter you are explicitly
specifying the interface or list of interfaces to be used.

8.  Is the parameter OPS_INTERCONNECTS which was available in 8i similar
    to this parameter ?

Yes, the parameter OPS_INTERCONNECTS was used to influence the network selection
for the Oracle 8i Parallel Server.

Note <120650.1> Init.ora Parameter “OPS_INTERCONNECTS” Reference Note
9.  Does Cluster_interconnect allow failover from one Interconnect to another
    Interconnect ?

Failover capability is not implemented at the Oracle level. In general this
functionality is delivered by hardware and/or Software of the operating system.
For platform details please see Oracle platform specific documentation
and the operating system documentation.
10. Is the size of messages limited on the Interconnect ?

The message size depends on the protocoll and platform.
UDP: In Oracle9i Release 2 ( message size for UDP was limited to 32K.
     Oracle9i allows to use bigger UDP message sizes depending on the
     platform. To increase throughput on an interconnect you have to adjust
     udp kernel parameters.
TCP: There is no need to set the message size for TCP.
RDG: The recommendations for RDG are documented in
        Oracle9i Administrator’s Reference – Part No. A97297-01
Bug <2475236> RAC multiblock read performance issue using UDP IPC
11. How can you see which protocoll is being used by the instances ?

Please see the alert-file(s) of your RAC instances. During startup you’ll
   find a message in the alert-file that shows the protocoll being used.

      Wed Oct 30 05:28:55 2002
      cluster interconnect IPC version:Oracle UDP/IP with Sun RSM disabled
      IPC Vendor 1 proto 2 Version 1.0
12. Can the parameter CLUSTER_INTERCONNECT be changed dynamically during runtime ?

    No. Cluster_interconnects is a static parameter and can only be set in the
    spfile or pfile (init.ora)


沪公网安备 31010802001379号